《比例的意义》教案

时间:2024-11-15 09:53:51
《比例的意义》教案

《比例的意义》教案

在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编整理的《比例的意义》教案,欢迎阅读,希望大家能够喜欢。

《比例的意义》教案1

教学内容:

补充有关比例意义、基本性质和解比例的练习

教学目标:

1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。

2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。

3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。

教学措施:

帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。

教学准备:

上传补充练习

教学过程:

一、整理知识

1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。

2.学生同桌之间进行交流。

3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。

4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)

二、基本练习

1.判断。

(1)比例是一个等式。

(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。

(3)比例的两个内项减去两个外项的积,差是0。

(4)任意两个正方形的周长与边长的比都可以组成比例。

(5)如果A╳9=B╳6(A、B均不为0),那么,A与B的比是3:2。

组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。

2.根据下面的等式,写出几个不同的比例。

3╳40=8╳15

(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?

(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。

3.判断四个数10.5、5/4、20/21、8能否组成比例?

(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)

(2)你认为这里选择哪种方法比较方便?

(3)指名学生交流后,学生写出比例。

小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。

4.按要求组成比例。

(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。

(2)从18的所有约数中选出四个组成一个比例。

(3)把8和9作两个外项,比值是1/2的一个比例。

(4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的.比例.

逐个出示题目,学生练习之前先要弄清题目要求。

学生完成后进行交流,要求说说自己的思考过程,教师及时评价。

教师要及时关注学生存在的问题及时辅导。

5.根据比例的基本性质,在括号里填上合适的数。

15:3=( ):1 2:0.5=12:( )

0.3/4=( )/32 7/9:( )=1/2:3/5

( )/12=3/18 ( ):4.5=0.4:9

先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。

三、解比例

25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56

2、根据下面的条件列出比例,并且解比例

a. 96和X的比等于16和5的比。

b. 45 和X的比等于25和8的比。

c. 两个外项是24和18,两个内项是X和36 。

四、全课总结

通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?

四、布置作业

补充相应练习

《比例的意义》教案2

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学重点:认识正比例关系的意义。

  教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、教学新课

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论,得出:

(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的.比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定 ……此处隐藏19102个字……p>[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4

=

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、全课总结(略)

《比例的意义》教案15

  教学内容:教材第99~102页例1~例3。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、铺垫孕伏:

1.正比例关

系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、自主探究:

1.教学例2。

出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨)1020304050

所需的天数

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的'吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例1

出示例1。

请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)判断。

现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例3。

出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做练一练。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做练习十二第1题。

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习十二第2~4题。

《《比例的意义》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式